As the race to net zero accelerates, manufacturing CEOs are poised to transform their entire operations, from the shop floor to waste management and even rethinking land use, with sustainability integrated throughout every aspect. During this era of “green transformation,” leaders ultimately fall into two categories: trailblazers leading the way and slow starters, who trail behind. If McKinsey and Co.’s prediction proves accurate, by 2027, 75 per cent of S&P 500 businesses will disappear entirely. This alarming prediction sends a clear message to CEOs: to remain competitive, leaders must proactively transform their businesses to meet the green demands of today, and groundbreaking technology, such as generative artificial intelligence (GenAI), will play a key role in expediting their efforts.
Selon Gartner, d'ici 2028, une entreprise mondiale performante sur quatre utilisera GenAI pour réduire ses émissions nettes à zéro. La gestion et la production des déchets comptent parmi les défis les plus importants et les plus coûteux auxquels les entreprises sont confrontées pour atteindre la neutralité carbone, en particulier dans le secteur manufacturier, l'un des plus grands pollueurs au monde. Selon Business Waste au Royaume-Uni, l'industrie produit environ 2 milliards de tonnes de déchets industriels par an, soit 50 % de l'ensemble des déchets mondiaux. La plupart de ces déchets proviennent de la surproduction, de marchandises défectueuses et de déchets « inutilisés », résultant de restes de matières premières non nécessaires au produit final.
Dans le contexte économique actuel, les PDG doivent devancer la concurrence dans tous les domaines, y compris dans la course vers le zéro net et la réduction des déchets grâce à des technologies innovantes telles que l’IA, qui peuvent les aider stratégiquement à y parvenir.
Cela soulève la question suivante : GenAI est-elle la solution miracle pour atteindre la neutralité carbone, réduire significativement les déchets et améliorer simultanément l'efficacité opérationnelle ? Bien qu'il n'existe pas de solution miracle, GenAI a incontestablement le potentiel de réduire les déchets, d'améliorer la productivité et d'accroître le chiffre d'affaires.
L'application de GenAI dans la fabrication : innovation = efficacité
The hype surrounding GenAI continues to build, and for good reason. According to Ernst & Young (EY), GenAI is estimated to unlock approximately USD $1.7 trillion to $3.4 trillion in gross domestic product (GDP) by 2033. In manufacturing alone, by 2033, MarketResearch.biz predicts that the global GenAI market will soar to approximately USD$6.4 million. In a world where digital transformation is revolutionising the sector, if CEOs leverage GenAI to suit their business needs, they can enable their businesses to thrive in all areas, including waste reduction and, ultimately, resulting in net-zero operations.
There are many ways manufacturers can apply GenAI to their processes. For example, fashion companies can leverage GenAI in 3D weaving technology. Making clothes made to fit minimises waste, enabling the industry to cut its carbon emissions. In the case of Airbus, their generative design enables their jetliners to consume less fuel and reduce waste and their overall environmental footprint.
Pour exploiter pleinement le potentiel de l'IA et de la GenAI, les PDG doivent commencer par une innovation axée sur les objectifs. Ainsi, ils peuvent s'assurer que les solutions émergentes adoptées sont adaptées à leurs besoins et alignées stratégiquement avec les objectifs et les valeurs de l'entreprise. Voici cinq façons pour les entreprises d'utiliser l'IA pour réduire le gaspillage et, par conséquent, optimiser leur efficacité.
Les 5 principales façons dont l'IA peut optimiser la gestion des déchets
1. Optimisation intelligente des processus
Imagine rotting food that sits in trucks due to poor planning or overproduction of inventory that happened due to human error. Within the realms of planning, production, etc., AI can support the enhancement of processes, ultimately reducing waste. A new AI-driven system developed by University of Virginia researchers could eliminate these errors and establish new benchmarks for manufacturing efficiency, as reported by MSN.
2. Maintenance prédictive avancée
Les stratégies de maintenance traditionnelles sont réactives et n'interviennent qu'en cas de panne d'une machine, mais GenAI peut prévenir les perturbations avant qu'elles ne surviennent. L'IA favorise la maintenance prédictive en anticipant les pannes, ce qui permet de réduire les surplus de pièces et les besoins excessifs en stocks, de diminuer le gaspillage et de préserver les ressources tout en maintenant une efficacité opérationnelle optimale.
3. Gestion améliorée de la chaîne d'approvisionnement
Des recherches ont révélé que la gestion de la chaîne d'approvisionnement basée sur l'IA conduit à des améliorations opérationnelles significatives, améliorant les niveaux de service jusqu'à 65 pour cent et les stocks jusqu'à 35 % et plus. L'IA peut améliorer l'efficacité de la chaîne d'approvisionnement en fournissant des informations exploitables et des analyses de données en temps réel, ce qui permet d'améliorer les prévisions de la demande et de réduire la surproduction et les stocks excédentaires.
4. Technologies de traçabilité de bout en bout
AI-enabled tech that tracks and reduces waste can help expose the reasons for production errors and help establish best practices to sustainably source, produce and dispatch high-quality goods. CEOs who use AI for digital tracing can uncover inefficiencies and execute targeted waste reduction strategies, leading to cost savings, reduction of emissions, and positioning their firm as a sustainability leader.
5. Conception générative et gestion du cycle de vie
La conception générative peut permettre des pratiques respectueuses de l’environnement telles que l’utilisation de matériaux durables that are not only good for the environment but also keep customers happy. These products can have an optimised lifecycle through better integrated sustainable processes to reduce waste and emissions to support net-zero advancement activities.
L'avantage de l'IA : accélérer les efforts de durabilité
In summary, the pursuit of reaching net-zero carbon emissions by 2050 is an ambitious goal and something that requires company-wide effort and dedication. Manufacturers are among some industries that have the most work to do, given the change needed to move towards net zero. Leaders must change their mindset on sustainability and embrace innovative technologies like AI that can boost efficiency, expedite efforts to reduce waste and optimise land use. Our top five ways to optimise and address waste management are a start, but CEOs must also categorise business activities into two categories: activities that support sustainability goals and activities that instead sabotage eco-friendly goals.
To develop a plan that addresses business activities that are not aligned with sustainability business goals, a robust Environmental, Social, and Governance (ESG) framework, such as the Indice de préparation de l'industrie à la durabilité des consommateurs (COSIRI) est au cœur des efforts de développement durable. COSIRI est un cadre largement reconnu permettant d'évaluer la maturité en matière de développement durable dans différentes dimensions, notamment l'atelier, la chaîne d'approvisionnement, la logistique, la stratégie, les risques, le développement des effectifs et le leadership. COSIRI peut révéler des informations précieuses que les PDG peuvent utiliser pour prendre des décisions stratégiques, favorisant ainsi l'intégration de pratiques durables dans leurs opérations. Pour en savoir plus sur COSIRI, consultez notre Évaluation COSIRI page.
Frequently Asked Questions About AI in Sustainable Manufacturing
What Role Does AI Play in Reducing Errors and Waste in Supply Chain Management?
AI reduces errors and waste in supply chain management by improving demand forecasting, automating inventory control, and detecting inefficiencies. This leads to smarter decisions, less overproduction, and lower resource waste.
How Does AI Support Sustainable Manufacturing Practices?
AI supports sustainable manufacturing by optimising energy use, reducing waste, predicting equipment failures, and improving process efficiency. It helps manufacturers align operations with sustainability and ESG goals.
What Are Examples of AI Applications in Reducing Industrial Waste?
Examples include AI-powered quality control to reduce defective products, predictive maintenance to avoid equipment breakdowns, and smart production planning to minimise raw material waste.
Can AI Help Manufacturers Lower Their Carbon Footprint?
Yes, AI can help manufacturers lower their carbon footprint by optimising energy consumption, reducing material waste, and enabling data-driven decisions that support low-emission production.
How Does AI Improve Energy Efficiency in Factories?
AI improves energy efficiency by analysing equipment performance, predicting peak energy usage, and automatically adjusting systems to reduce unnecessary power consumption in real time.
What is the Impact of Predictive Analytics on Sustainable Manufacturing?
Predictive analytics helps sustainable manufacturing by forecasting maintenance needs, reducing downtime, and minimising resource waste. It allows manufacturers to run more efficiently and sustainably.
How Does AI Enable Real-time Decision-making in Manufacturing?
AI enables real-time decision-making by processing live data from machines and sensors to detect problems, adjust processes, and optimise performance instantly, supporting agile and efficient operations.
Why is AI Important for Circular Economy Initiatives in Manufacturing?
AI is important for circular economy initiatives because it helps track resource usage, predict material reuse opportunities, and design waste-minimising production cycles, enabling closed-loop manufacturing systems.
What Challenges Do Companies Face When Implementing AI for Sustainability?
Challenges include high implementation costs, data integration issues, lack of skilled talent, and resistance to change. Companies must align AI with clear sustainability goals to maximise impact.
Why is AI Important in Sustainable Manufacturing?
AI is important in sustainable manufacturing because it enables smarter resource management, waste reduction, energy savings, and process optimisation—all critical for achieving long-term environmental and operational goals.