As the race to net zero accelerates, manufacturing CEOs are poised to transform their entire operations, from the shop floor to waste management and even rethinking land use, with sustainability integrated throughout every aspect. During this era of “green transformation,” leaders ultimately fall into two categories: trailblazers leading the way and slow starters, who trail behind. If McKinsey and Co.’s prediction proves accurate, by 2027, 75 per cent of S&P 500 businesses will disappear entirely. This alarming prediction sends a clear message to CEOs: to remain competitive, leaders must proactively transform their businesses to meet the green demands of today, and groundbreaking technology, such as generative artificial intelligence (GenAI), will play a key role in expediting their efforts.
Laut Gartner wird bis 2028 jedes vierte der weltweit leistungsstärksten Unternehmen GenAI nutzen, um seine Netto-Emissionen auf Null zu reduzieren. Abfallmanagement und -produktion gehören zu den größten und teuersten Herausforderungen für Unternehmen auf dem Weg zum Netto-Null-Ziel, insbesondere im verarbeitenden Gewerbe, einem der weltweit größten Umweltverschmutzer. Laut dem britischen Wirtschaftsmagazin Business Waste produziert die Branche jährlich rund 2 Milliarden Tonnen Industrieabfälle, was 50 Prozent des weltweiten Abfallaufkommens entspricht. Der Großteil des Abfalls entsteht durch Überproduktion, fehlerhafte Ware und „Restmüll“, also Reste von Rohstoffen, die im Endprodukt nicht mehr benötigt werden.
Im aktuellen Wirtschaftsumfeld müssen CEOs der Konkurrenz in allen Bereichen einen Schritt voraus sein, auch im Rennen um Netto-Null und Abfallreduzierung mit innovativen Technologien wie KI, die ihnen dabei strategisch helfen können.
Dies wirft die Frage auf: Ist GenAI das Allheilmittel, um Netto-Null-Emissionen zu erreichen, den Abfall deutlich zu reduzieren und gleichzeitig die Betriebseffizienz zu steigern? Zwar gibt es keine Abkürzungen, aber GenAI hat durchaus das Potenzial, Abfall zu reduzieren, die Produktivität zu steigern und den Umsatz zu erhöhen.
Die Anwendung von GenAI in der Fertigung: Innovation = Effizienz
The hype surrounding GenAI continues to build, and for good reason. According to Ernst & Young (EY), GenAI is estimated to unlock approximately USD $1.7 trillion to $3.4 trillion in gross domestic product (GDP) by 2033. In manufacturing alone, by 2033, MarketResearch.biz predicts that the global GenAI market will soar to approximately USD$6.4 million. In a world where digital transformation is revolutionising the sector, if CEOs leverage GenAI to suit their business needs, they can enable their businesses to thrive in all areas, including waste reduction and, ultimately, resulting in net-zero operations.
There are many ways manufacturers can apply GenAI to their processes. For example, fashion companies can leverage GenAI in 3D weaving technology. Making clothes made to fit minimises waste, enabling the industry to cut its carbon emissions. In the case of Airbus, their generative design enables their jetliners to consume less fuel and reduce waste and their overall environmental footprint.
Um das Potenzial von KI und GenAI voll auszuschöpfen, müssen CEOs zielgerichtete Innovationen vorantreiben. So stellen sie sicher, dass die neuen Lösungen zielführend sind und strategisch mit den Unternehmenszielen und -werten übereinstimmen. Hier sind fünf Möglichkeiten, wie Unternehmen KI einsetzen können, um Abfall zu reduzieren und gleichzeitig die Effizienz zu steigern.
Die 5 wichtigsten Möglichkeiten, wie KI das Abfallmanagement optimieren kann
1. Intelligente Prozessoptimierung
Imagine rotting food that sits in trucks due to poor planning or overproduction of inventory that happened due to human error. Within the realms of planning, production, etc., AI can support the enhancement of processes, ultimately reducing waste. A new AI-driven system developed by University of Virginia researchers could eliminate these errors and establish new benchmarks for manufacturing efficiency, as reported by MSN.
2. Erweiterte vorausschauende Wartung
Herkömmliche Wartungsstrategien sind reaktiv und greifen erst bei Maschinenausfällen. GenAI hingegen kann Störungen verhindern, bevor sie auftreten. KI unterstützt die vorausschauende Wartung, indem sie Ausfälle vorhersagt. Dadurch können überschüssige Teile und übermäßige Lagerbestände vermieden, Abfall reduziert und Ressourcen geschont werden, während gleichzeitig die maximale Betriebseffizienz gewährleistet bleibt.
3. Verbessertes Supply Chain Management
Untersuchungen haben ergeben, dass KI-gestütztes Supply-Chain-Management zu erheblichen betrieblichen Verbesserungen führt und die Servicequalität um bis zu 65 Prozent und Lagerbestände um bis zu 35 Prozent und mehr. KI kann die Effizienz der Lieferkette steigern, indem sie umsetzbare Erkenntnisse und Echtzeit-Datenanalysen liefert, was zu verbesserten Bedarfsprognosen und der Reduzierung von Überproduktion und überschüssigen Lagerbeständen führt.
4. Technologien zur End-to-End-Rückverfolgbarkeit
AI-enabled tech that tracks and reduces waste can help expose the reasons for production errors and help establish best practices to sustainably source, produce and dispatch high-quality goods. CEOs who use AI for digital tracing can uncover inefficiencies and execute targeted waste reduction strategies, leading to cost savings, reduction of emissions, and positioning their firm as a sustainability leader.
5. Generatives Design und Lebenszyklusmanagement
Generatives Design kann umweltfreundliche Praktiken ermöglichen, wie beispielsweise die Nutzung von nachhaltige Materialien that are not only good for the environment but also keep customers happy. These products can have an optimised lifecycle through better integrated sustainable processes to reduce waste and emissions to support net-zero advancement activities.
Der KI-Vorteil: Beschleunigung der Nachhaltigkeitsbemühungen
In summary, the pursuit of reaching net-zero carbon emissions by 2050 is an ambitious goal and something that requires company-wide effort and dedication. Manufacturers are among some industries that have the most work to do, given the change needed to move towards net zero. Leaders must change their mindset on sustainability and embrace innovative technologies like AI that can boost efficiency, expedite efforts to reduce waste and optimise land use. Our top five ways to optimise and address waste management are a start, but CEOs must also categorise business activities into two categories: activities that support sustainability goals and activities that instead sabotage eco-friendly goals.
To develop a plan that addresses business activities that are not aligned with sustainability business goals, a robust Environmental, Social, and Governance (ESG) framework, such as the Index zur Nachhaltigkeitsbereitschaft der Verbraucherindustrie (COSIRI) ist zentral für nachhaltige Bemühungen. COSIRI ist ein weithin anerkanntes Rahmenwerk, das die Nachhaltigkeitsreife in verschiedenen Dimensionen bewertet, darunter Produktion, Lieferkette, Logistik, Strategie, Risiken, Personalentwicklung und Führung. COSIRI liefert wichtige Erkenntnisse, die CEOs für strategische Entscheidungen nutzen und die Integration nachhaltiger Praktiken in den Betrieb unterstützen können. Um mehr über COSIRI zu erfahren, besuchen Sie unsere COSIRI-Bewertung Seite.
Frequently Asked Questions About AI in Sustainable Manufacturing
What Role Does AI Play in Reducing Errors and Waste in Supply Chain Management?
AI reduces errors and waste in supply chain management by improving demand forecasting, automating inventory control, and detecting inefficiencies. This leads to smarter decisions, less overproduction, and lower resource waste.
How Does AI Support Sustainable Manufacturing Practices?
AI supports sustainable manufacturing by optimising energy use, reducing waste, predicting equipment failures, and improving process efficiency. It helps manufacturers align operations with sustainability and ESG goals.
What Are Examples of AI Applications in Reducing Industrial Waste?
Examples include AI-powered quality control to reduce defective products, predictive maintenance to avoid equipment breakdowns, and smart production planning to minimise raw material waste.
Can AI Help Manufacturers Lower Their Carbon Footprint?
Yes, AI can help manufacturers lower their carbon footprint by optimising energy consumption, reducing material waste, and enabling data-driven decisions that support low-emission production.
How Does AI Improve Energy Efficiency in Factories?
AI improves energy efficiency by analysing equipment performance, predicting peak energy usage, and automatically adjusting systems to reduce unnecessary power consumption in real time.
What is the Impact of Predictive Analytics on Sustainable Manufacturing?
Predictive analytics helps sustainable manufacturing by forecasting maintenance needs, reducing downtime, and minimising resource waste. It allows manufacturers to run more efficiently and sustainably.
How Does AI Enable Real-time Decision-making in Manufacturing?
AI enables real-time decision-making by processing live data from machines and sensors to detect problems, adjust processes, and optimise performance instantly, supporting agile and efficient operations.
Why is AI Important for Circular Economy Initiatives in Manufacturing?
AI is important for circular economy initiatives because it helps track resource usage, predict material reuse opportunities, and design waste-minimising production cycles, enabling closed-loop manufacturing systems.
What Challenges Do Companies Face When Implementing AI for Sustainability?
Challenges include high implementation costs, data integration issues, lack of skilled talent, and resistance to change. Companies must align AI with clear sustainability goals to maximise impact.
Why is AI Important in Sustainable Manufacturing?
AI is important in sustainable manufacturing because it enables smarter resource management, waste reduction, energy savings, and process optimisation—all critical for achieving long-term environmental and operational goals.